CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design
نویسندگان
چکیده
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3-4 highly conserved amino acids within a 3' degenerate core. A longer 5' non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org).
منابع مشابه
Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences.
We describe a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. Duri...
متن کاملiCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences
PCR amplification using COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) has proven to be highly effective for identifying unknown pathogens and characterizing novel genes. We describe iCODEHOP; a new interactive web application that simplifies the process of designing and selecting CODEHOPs from multiply-aligned protein sequences. iCODEHOP intelligently guides the user through th...
متن کاملMolecular Analysis of a Copper- and Zinc-Containing Superoxide Dismutase Gene Isolated From the Latex of Euphorbia Characias: Another Piece in the Molecular Puzzle of Euphorbiaceae Latex Proteins
A copperand zinc-containing superoxide dismutase (Cu/Zn-SOD) cDNA was isolated from the Euphorbia characias latex (Elx) using consensus degenerate hybrid oligonucleotide primer (CODEHOP) design and RT-PCR strategy. Both 3’and 5’untraslated regions (UTR) were isolated by rapid amplification of cDNA ends (RACE) method. Analysis of the nucleotide sequence revealed that the Cu/Zn-SOD cDNA contains ...
متن کاملMapping transposon insertion sites by touchdown PCR and hybrid degenerate primers.
A novel mapping method based on touchdown PCR was developed for identifying a transposon insertion site in genomic DNA using a hybrid consensus-degenerate primer in combination with a specific primer that anneals to the transposon. The method was tested using Xanthomonas citri transposon mutants. PCR products contained adjacent DNA regions that belonged to both X. citri genomic DNA and the tran...
متن کاملDegenerate Primer Design Using Computational Tools Computational Molecular Biology
The polymerase chain reaction (PCR) is widely used to uncover new information about genes and genomes, but is limited in that it is highly dependent on the use of specific and sensitive primers to yield good results. Primers can target a specific, known sequence, but what is often more interesting is the use of degenerate primers to target unknown sequences. Degenerate primers are designed base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 31 13 شماره
صفحات -
تاریخ انتشار 2003